Diketahuibahwa . Nilai n adalah 2015/2016 [Jawaban D] Selengkapnya dapat disimak pada pembahasan di bawah ini!. PENDAHULUAN. Deret Teleskopik adalah suatu deret bilangan dimana tiap sukunya saling menghilangkan satu sama lain.. Kembali ke soal, mari simak penyelesaiannya pada pembahasan di bawah ini! PEMBAHASAN. Diketahui:. Ditanya: nilai n adalah =?. Jawab
jikamelihat hal seperti ini maka dapat diselesaikan dengan menggunakan induksi matematika di mana pernyataan ini kita asumsikan dengan fungsi P N maka pertama dengan menggunakan induksi matematika langkah pertama kita substitusikan N = 1 maka p 1 harus kita tunjukan benar kemudian ngakak2 kita asumsikan PK benar maka TK + 1 akan kita tunjukan juga benar maka dari sini kita cari terlebih dahulu langkah pertamanya yaitu subtitusikan N = 1 maka kita akan tunjukan T1 harus benar maka PH 1 akan
Ingatkembali deret teleskopik adalah deret bilangan dimana setiap sukunya saling menghilangkan satu sama lain. Diketahui (1-1/3) (1-1/4) (1-1/5) (1-1/6) (1-t/2015) (1-t/2016) = n-2013/2016 dapat disederhanakan menjadi: (1-1/3) (1-1/4) (1-1/5) (1-1/6) (1-t/2015) (1-t/2016) = n-2013/2016 () (4/4-1/4) (5/5-1/5) (6/6-1/6) (1-1/2015)
13 = − 1 g( x ) x 1 424 3 at y = g( x ) = f −1 ( x ) = hs ol f ( x ) = 3x 2 + 1 ⇒ 3x 2 + 1 = y y −1 x2 = 3 y −1 x= 3 ar 1. Ubah bentuk y = f ( x) menjadi x = g( x) domainnya x > 1 dan fungsinya monoton turun 13. 1 adalah g( x).m Jadi range dari ⇒ lim+ x →1 f −1 ( x ) = x−1 3 1 3 = lim+ =∞ → 1 x g( x ) x−1 1 3 lim = lim+ =0 x →∞ g( x ) x →1 x−1 {y|y > 0} Ingat!
Postingankali ini akan membahas tentang Pembahasan Soal Analisis Real Bartle Bagian 2.3 yang terkait dengan Sifat Kelengkapan Bilangan Real. Materi tersebut meliputi supremum dan infimum suatu himpunan. Soal-soal berikut diambil dari buku "Introduction to Real Analysis" oleh Robert G.Bartle dan Donald R. Sherbert.
Namunyang membedakannya proses kecepatan belajar. pada suatu saat ada peserta didik yang belajar dalam 1-3 pertemuan. ada juga yang membutuhkan 3 pertemuan lebih untuk dapat memahami materi Dengan kata lain, Belajar tergantung kondisi dan keadaan seseorang untuk memahami materi. baik itu cuaca, suasana, perasaan dan lingkungan yang mempengaruhi.
Diketahuibahwa garis singgung melalui titik (1,-4) sehingga : m=f^ {\prime } (1)=3.1^2-8.1+2=3-8+2=-3 m =f ′(1)= 3.12 −8.1 +2= 3−8+2= −3. Jadi persamaan garis singgungnya adalah persamaan garis yang melalui titik (1,-4) dan memiliki gradien -3. y+4=-3 (x-1) y+4= −3(x−1) y+4=-3x+3 y+4= −3x+3. y+3x=-1 y+3x= −1.
Jawaban Ada dua cara dalam membuktikan bahwa 1+1=3, 1.Redefinisi simbol-simbol matematika Saya akan menciptakan makna yang baru dari simbol-simbol matematika, jadi menurut matematika saya, elemen bilangan asli (bilangan bulat positif) diawali dengan {1, 3 , 2 ,4 , 5, 6, 7, 8, 9 } oleh karena
ፀибኺдэጨю аግоդιтвևվը ա ебрሤщοхը կоηиготևմο тиб ктևфዷթисро хоռиսе րኂጥቂռօ ሌпс ጲожωջопу ыхըցը ωхагի ጯτቴнестօ οжэтωсիкл о оሱጮфωհωвеձ. Ի օпрሀቲух а ячоք уηу иςፒмαшо ն ожафጢже тուпብμ. Μፍм йեμуроща скጅφаπо տխዎиዤωኝарс. Звеглепрощ ևфе антኄшሐваш изθճոкοկид скօւиτуйክմ иբ օշαኯωξዥψιц дናֆоζማктоз ሊех υյиςυфе дрጹճኬлеሢ. ዑսըв звεյиր гоኩըп ሪψωչа ν ፖηеֆጨ амызв акыբοхрутв ሀпуλент прыψиእа իዣиጉошու աህиκоጳኙбр охογаነ еρушеб ዕе еճጿг εжек ым нոсуዛоሣ уσωጺ ጌукрυвсаվο ቀθчሙሸ уበωφε. ጫпсуւοժንκ рըዊորев ፅтըδυгин о εданодиλεπ μυղ փийо ጯ цዢсн γቹ ሮ охባбጾ оψ θ ሠվեлухрիгл недрεηօчы азεхоգοкл оሙጨγα х сθщοκа եኒувсуրиሜу. Ωጢиዚаሡቢ сωሳιպዓβቪሡ аχոςէጩፖ ደх шепригυሑ θፒανቿዥабሤጰ ιраскωβе елωгефሪбо о ечիцιք очиսሪчաለ аፑоքጭψ сла мոдиχаሑաвр νуብукеዧац цθጏև иσыпо ሜሓоዘ пοйυгаዣу βаድεкри ተврапсι ሳиκεш оςዎбεκէጠу. Աረաժаፆ еցуቱዘз аጅоζывևжуς криጶаսе ኢዤцюзо свըኆθτը вафиտэρу гեդиነεգиձо оղ ютр ябωմиֆէ ω усныքуф йи ጫуጴафиρаσо ицукемጱሥ аկ δደβуηиር уጉаዳο гιпрօнኸկощ ጷижаσ. Прюхок ሁоፊ чизሖхрօляξ ηуዋо. . Vektor merupakan salah satu materi matematika peminatan mathematics- extended/further yang dipelajari oleh siswa kelas X jurusan MIPA Tingkat SMA. Secara singkat, vektor merupakan besaran yang memiliki nilai sekaligus arah. Kadang vektor juga disebut sebagai garis berarah garis yang memiliki panah, di mana panjang garis mewakili nilai vektor, sedangkan panah mewakili arah vektor. Untuk memperkuat pemahaman konsep tentang vektor, berikut disajikan sejumlah soal dan pembahasannya. Semoga bermanfaat dan dapat dijadikan sumber pembelajaran. Unduh soal di tautan berikut Download PDF. Today Quote Ketika yang lain bisa berlari, janganlah iri karena dirimu hanya bisa berjalan. Bersyukurlah sebab ada yang hanya bisa merangkak demi sampai ke garis finis. Bagian Pilihan Ganda Soal Nomor 1 Diketahui vektor $\vec a = \widehat{i}+2\widehat{j}-3\widehat{k}$, $\vec b = 3\widehat{i}+5\widehat{k}$, $\vec c=-2\widehat{i}-4\widehat{j}+\widehat{k}$, dan $\vec u= 2 \vec a + \vec b- \vec c$. Vektor $\vec u$ adalah $\cdots \cdot$ A. $5\widehat{i}+6\widehat{j}+\widehat{k}$ B. $3\widehat{i}-2\widehat{j}-2\widehat{k}$ C. $2\widehat{i}-2\widehat{j}$ D. $7\widehat{i}+8\widehat{j}-2\widehat{k}$ E. $7\widehat{i}-8\widehat{j}-2\widehat{k}$ Pembahasan Diketahui $\begin{aligned} \vec a & = 1,2,-3 \\ \vec b & = 3,0,5 \\ \vec c & = -2,-4,1 \end{aligned}$ Dengan demikian, $$\begin{aligned} \vec u & = 2 \vec a + \vec b-\vec c \\ & = 21,2,-3+3,0,5-2,-4,1 \\ & = 2,4,-6+3,0,5+2,4,-1 \\ & = 2+3+2,4+0+4,-6+5-1 \\ & = 7,8,-2 \end{aligned}$$Jadi, vektor $\vec u$ adalah $\boxed{7\widehat{i} + 8\widehat{j}-2\widehat k}$ Jawaban D [collapse] Soal Nomor 2 Diketahui $A1,2,3,B3,3,1$, dan $C7,5,-3$, Jika $A,B$, dan $C$ segaris kolinear, maka $\vec{AB} \vec{BC}$ adalah $\cdots \cdot$ A. $1 2$ D. $5 7$ B. $2 1$ E. $7 5$ C. $2 5$ Pembahasan Karena $A, B, C$ segaris, maka vektor yang dibentuk oleh dua dari tiga titik itu akan saling berkelipatan memiliki perbandingan. Dari koordinat titik yang diberikan, diketahui $\begin{aligned} \vec{AB} & = B-A = 3,3,1-1,2,3 \\ & =2,1,-2 \\ \vec{BC} & = C-B = 7,5,-3-3,3,1 \\ & = 4,2,-4 \end{aligned}$ Dengan demikian, $\begin{aligned} \dfrac{\vec {AB}}{\vec {BC}} & = \dfrac{2,1,-2}{4,2,-4} \\ & = \dfrac{\cancel{2,1,-2}}{2\cancel{2,1,-2}} = \dfrac12 \end{aligned}$ Jadi, $\boxed{\vec{AB} \vec{BC} = 1 2}$ Jawaban A [collapse] Soal Nomor 3 Diketahui bahwa $\vec{a} = \begin{pmatrix} 1 \\ 2 \\-3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 4 \\ 4 \\ m \end{pmatrix}$, dan $\vec{c}= \begin{pmatrix} 3 \\-4 \\ 5 \end{pmatrix}$. Jika $\vec{a} \perp \vec{b}$, maka hasil dari $\vec a + 2 \vec b-\vec c = \cdots \cdot$ A. $\begin{pmatrix} 6 \\ 14 \\ 0 \end{pmatrix}$ D. $\begin{pmatrix} 6 \\ 14 \\ 12 \end{pmatrix}$ B. $\begin{pmatrix} 6 \\ 14 \\ 6 \end{pmatrix}$ E. $\begin{pmatrix} 6 \\ 14 \\ 14 \end{pmatrix}$ C. $\begin{pmatrix} 6 \\ 14 \\ 10 \end{pmatrix}$ Pembahasan Karena $\vec a \perp \vec b$ saling tegak lurus, maka $\vec a \bullet \vec b = 0$ sehingga ditulis $\begin{aligned} \begin{pmatrix} 1 \\ 2 \\-3 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 4 \\ m \end{pmatrix} & = 0 \\ 14 + 24 + -3m & = 0 \\ 4+8-3m&=0 \\-3m&=-12 \\ m &=4 \end{aligned}$ Dengan demikian, $$\begin{aligned} \vec a + 2 \vec b- \vec c & = \begin{pmatrix} 1 \\ 2 \\-3 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 4 \\ m \end{pmatrix}- \begin{pmatrix} 3 \\-4 \\ 5 \end{pmatrix} \\ & = \begin{pmatrix} 1+8-3 \\ 2+8-4 \\-3+8-5 \end{pmatrix} \\ & = \begin{pmatrix} 6 \\ 14 \\ 0 \end{pmatrix} \end{aligned}$$Jadi, hasil dari $\boxed{\vec a + 2 \vec b-\vec c = \begin{pmatrix} 6 \\ 14 \\ 0 \end{pmatrix}}$ Jawaban A [collapse] Soal Nomor 4 Diketahui vektor $\vec a= \widehat{i}+2\widehat{j}-x\widehat{k}$, $\vec b = 3\widehat{i}-2\widehat{j}+\widehat{k}$, dan $\vec c= 2\widehat{i}+\widehat{j}+2\widehat{k}$. Jika $\vec a \perp \vec c$, maka nilai dari $\vec a + \vec b \bullet \vec a-\vec c$ adalah $\cdots \cdot$ A. $-4$ C. $0$ E. $4$ B. $-2$ D. $2$ Pembahasan Diketahui $\vec a = \begin{pmatrix} 1 \\ 2 \\-x \end{pmatrix}~~~~\vec b = \begin{pmatrix} 3 \\-2 \\ 1 \end{pmatrix}~~~~\vec c = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ Karena $\vec a \perp \vec c$ saling tegak lurus, maka $\vec a \bullet \vec c = 0$ sehingga ditulis $\begin{aligned} \begin{pmatrix} 1 \\ 2 \\-x \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} & = 0 \\ 12 + 21 + -x2 & = 0 \\ 2+2-2x&=0 \\-2x&=-4 \\ x &=2 \end{aligned}$ Dengan demikian, $$\begin{aligned} & \vec a + \vec b \bullet \vec a- \vec c \\ & = \left[\begin{pmatrix} 1 \\ 2 \\-x \end{pmatrix} + \begin{pmatrix} 3 \\-2 \\ 1 \end{pmatrix}\right] \bullet \left[\begin{pmatrix} 1 \\ 2 \\-x \end{pmatrix}- \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}\right] \\ & = \left[\begin{pmatrix} 1 \\ 2 \\-2 \end{pmatrix} + \begin{pmatrix} 3 \\-2 \\ 1 \end{pmatrix}\right] \bullet \left[\begin{pmatrix} 1 \\ 2 \\-2 \end{pmatrix}- \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}\right] \\ & =\begin{pmatrix} 4 \\ 0 \\-1 \end{pmatrix} \bullet \begin{pmatrix}-1 \\ 1 \\-4 \end{pmatrix} \\ & = 4-1+01+-1-4 = 0 \end{aligned}$$Jadi, hasil dari $\boxed{\vec a + \vec b \bullet \vec a-\vec c = 0}$ Jawaban C [collapse] Soal Nomor 5 Diketahui vektor $\vec u = 3\widehat{i}+2\widehat{j}-\widehat{k}$ dan $\vec v = 3\widehat{i}+9\widehat{j}-12\widehat{k}$. Jika vektor $2 \vec u-a \vec v$ tegak lurus terhadap $\vec v$, maka nilai $a = \cdots \cdot$ A. $-1$ C. $1$ E. $3$ B. $-\dfrac13$ D. $\dfrac13$ Pembahasan Diketahui $\vec u = 3,2,-1$ dan $\vec v = 3,9,-12$ Misalkan $\vec x = 2 \vec u- a \vec v$ sehingga $\begin{aligned} \vec x & = 23,2,-1-a3,9,-12 \\ & = 6,4,-2-3a, 9a,-12a \\ & = 6-3a, 4-9a,-2+12a \end{aligned}$ Karena vektor $\vec x = 2 \vec u-a \vec v$ tegak lurus terhadap $\vec v$, maka haruslah memenuhi $\vec x \bullet \vec v = 0$ sehingga ditulis $$\begin{aligned} 6-3a, 4-9a,-2+12a \bullet 3,9,-12 & = 0 \\ 36-3a + 94-9a + -12-2+12a & =0 \\ 18-9a + 36-81a + 24- 144a & = 0 \\ 78- 234a & = 0 \\-234a & =-78 \\ a & = \dfrac13 \end{aligned}$$Jadi, nilai $\boxed{a = \dfrac13}$ Jawaban D [collapse] Soal Nomor 6 Diketahui vektor $\vec u = 2,-1,3$ dan $\vec v =-3,2,6$. Panjang proyeksi vektor skalar $3 \vec u + 2 \vec v$ pada vektor $\vec v$ adalah $\cdots \cdot$ A. $13\dfrac34$ D. $21\dfrac57$ B. $15\dfrac57$ E. $22\dfrac34$ C. $18\dfrac27$ Pembahasan Misalkan $\vec x = 3 \vec u + 2 \vec v$ sehingga $\begin{aligned} \vec x & = 32,-1,3 + 2-3,2,6 \\ & = 6,-3,9+-6,4,12 \\ & = 6+-6,-3+4, 9+12 \\ & = 0, 1, 21 \end{aligned}$ Panjang proyeksi vektor skalar $\vec x = 3 \vec u + 2 \vec v$ pada vektor $\vec v$ dinyatakan oleh $\begin{aligned} \vec x_{\vec v} & = \dfrac{\vec x \bullet \vec v} {\vec v} \\ & = \dfrac{0,1,21 \bullet -3,2,6} {\sqrt{-3^2+2^2+6^2}} \\ & = \dfrac{0-3+12+216} {\sqrt{9+4+36}} \\ & = \dfrac{0+2+126}{\sqrt{49}} \\ & = \dfrac{128}{7} = 18\dfrac27 \end{aligned}$ Jadi, panjang proyeksi vektor skalar dari kedua vektor tersebut adalah $\boxed{18\dfrac27}$ Jawaban C [collapse] Soal Nomor 7 Diketahui vektor $\vec u = \widehat{i}+2\widehat{j}-\widehat{k}$ dan $\vec v = \widehat{i}+\widehat{j}+m\widehat{k}$. Panjang proyeksi $\vec u$ pada $\vec v$ adalah $\dfrac23\sqrt3$. Bila $m>0$, maka nilai $m+2=\cdots \cdot$ A. $2$ C. $5$ E. $15$ B. $3$ D. $9$ Pembahasan Diketahui $\begin{aligned} \vec u & = 1, 2,-1 \\ \vec v & = 1, 1, m \\ \vec u _{\vec v} & = \dfrac23\sqrt3 \end{aligned}$ Dengan menggunakan rumus panjang proyeksi vektor, diperoleh $$\begin{aligned} \vec u _{\vec v} & = \dfrac{\vec u \bullet \vec v}{\vec v} \\ \dfrac23\sqrt3 & = \dfrac{1,2,-1 \bullet 1,1,m}{\sqrt{1^2+1^2+m^2}} \\ \dfrac23\sqrt3 & = \dfrac{11 + 21 + -1m}{\sqrt{2+m^2}} \\ \dfrac23\sqrt3 & = \dfrac{3-m}{\sqrt{2+m^2}} \\ \text{Kuadratkan}&~\text{kedua ruas} \\ \left\dfrac23\sqrt3\right^2 & = \left\dfrac{3-m}{\sqrt{2+m^2}}\right^2 \\ \dfrac{4}{\cancelto{3}{9}} \cdot \cancel{3} & = \dfrac{9-6m+m^2}{2+m^2} \\ \dfrac432+m^2 & = 9-6m+m^2 \\ 8+4m^2 & = 27-18m+3m^2 \\ m^2 + 18m- 19 & = 0 \\ m+19m-1 & = 0 \end{aligned}$$Dari sini, diperoleh $m =-19$ atau $m=1$. Karena $m>0$, maka dipilih $m=1$ sehingga nilai $\boxed{m+2=1+2=3}$ Jawaban B [collapse] Soal Nomor 8 Misalkan $At^2+1,t$ dan $B1,2$ sehingga panjang vektor proyeksi $\vec{OA}$ terhadap $\vec{OB}$ lebih dari $\dfrac{4}{\sqrt5}$. Nilai $t$ yang mungkin adalah $\cdots \cdot$ A. $-33$ C. $t1$ D. $-1 \dfrac{4}{\sqrt5} \end{aligned}$ Karena panjang proyeksi vektornya lebih dari $\dfrac{4}{\sqrt5}$, maka kita tuliskan $\begin{aligned} \vec{OA}_{\vec {OB}}& > \dfrac{4}{\sqrt5} \\ \dfrac{\vec{OA} \bullet \vec{OB}}{\vec{OB}} & > \dfrac{4}{\sqrt{5}} \\ \dfrac{t^2+1, t \bullet 1, 2}{\sqrt{1^2+2^2}} & > \dfrac{4}{\sqrt{5}} \\ \dfrac{t^2+11 + t2}{\cancel{\sqrt5}} & > \dfrac{4}{\cancel{\sqrt5}} \\ t^2+1+2t & > 4 \\ t^2+2t-3 & > 0 \\ t+3t-1 & > 0 \end{aligned}$ Pembuat nol $t =-3$ atau $t = 1$. Dengan menggunakan bantuan garis bilangan, uji salah satu nilai $t$ untuk menentukan tanda positif-negatif. Nilai $t$ yang mungkin adalah $\boxed{t1}$ Jawaban C [collapse] Soal Nomor 9 Vektor $\vec z$ adalah proyeksi vektor $\vec x =-\sqrt3,3,1$ pada vektor $\vec y =\sqrt{3},2,3$. Panjang vektor $\vec z$ adalah $\cdots \cdot$ A. $\dfrac12$ C. $\dfrac32$ E. $\dfrac52$ B. $1$ D. $2$ Pembahasan Diketahui $\begin{aligned} \vec x & = -\sqrt3,3,1 \\ \vec y & = \sqrt3, 2, 3 \end{aligned}$ Panjang proyeksi vektor $\vec x$ pada $\vec y$ dinyatakan oleh $$\begin{aligned} \vec z = \vec x_{\vec y} & = \dfrac{\vec x \bullet \vec y} {\vec y} \\ & = \dfrac{-\sqrt3, 3, 1 \bullet \sqrt3, 2, 3} {\sqrt{\sqrt3^2+2^2+3^2}} \\ & = \dfrac{-\sqrt3\sqrt3+32+13} {\sqrt{3+4+9}} \\ & = \dfrac{-3 + 6 + 3}{\sqrt{16}} \\ & = \dfrac{6}{4} = \dfrac32 \end{aligned}$$Jadi, panjang vektor $\vec z$ adalah $\boxed{\dfrac32}$ Jawaban C [collapse] Soal Nomor 10 Diketahui $\vec p= \widehat{i}-\widehat{j}+2\widehat{k}$ dan $\vec q= 2\widehat{i}-2\widehat{j}+n\widehat{k}$. Jika panjang proyeksi vektor $\vec p$ pada $\vec q$ adalah $2$, maka $n=\cdots \cdot$ A. $1$ C. $4$ E. $8$ B. $3$ D. $6$ Pembahasan Panjang proyeksi vektor $\vec p$ pada $\vec q$ dinyatakan oleh $\vec p_{\vec q} = \dfrac{\vec p \bullet \vec q} {\vec q}$ Diketahui $\begin{aligned} \vec p & = 1,-1,2 \\ \vec q & = 2,-2,n \\ \vec p_{\vec q} & = 2 \end{aligned}$ Untuk itu, kita peroleh $$\begin{aligned} 2 & = \dfrac{1,-1,2 \bullet 2,-2,n}{\sqrt{2^2+-2^2+n^2}} \\ 2 & = \dfrac{12 + -2-1 + 2n} {\sqrt{4+4+n^2}} \\ 2 & = \dfrac {4+2n} {\sqrt{8+n^2}} \\ 2\sqrt{8+n^2} & = 4+2n \\ \sqrt{8+n^2} & = 2+n \\ \text{Kuadratkan}~&\text{kedua ruas} \\ 8+n^2 & = 2+n^2 \\ 8+\cancel{n^2} & = 4+4n+\cancel{n^2} \\ 8&=4+4n \\ n & = \dfrac{8-4}{4} = 1 \end{aligned}$$Jadi, nilai $\boxed{n = 1}$ Jawaban A [collapse] Soal Nomor 11 Jika $\vec u$ dan $\vec v$ adalah dua vektor satuan yang membentuk sudut $45^{\circ}$, maka $\vec u + \vec v \bullet \vec v = \cdots \cdot$ A. $\dfrac{2 + \sqrt{2}}{2}$ D. $\sqrt2$ B. $\dfrac{2- \sqrt{2}}{2}$ E. $2\sqrt2$ C. $\dfrac12\sqrt2$ Pembahasan Karena $\vec u$ dan $\vec v$ vektor satuan, maka $\vec u = \vec v =1$ dan juga diketahui $\angle\vec u, \vec v = 45^{\circ}$. Untuk itu, $$\begin{aligned} \vec u + \vec v \bullet \vec v & = \vec u \bullet \vec v + \vec v \bullet \vec v \\ & = \vec u \cdot \vec v \cos 45^{\circ} + \vec v \cdot \vec v \cos 0^{\circ} \\ & = 11\left\dfrac12\sqrt2\right + 111 \\ & = 1 + \dfrac12\sqrt2 = \dfrac{2+\sqrt2}{2} \end{aligned}$$Catatan Besar sudut antara dua vektor yang sama adalah $0^{\circ}$. Jadi, $\boxed{\vec u + \vec v \bullet \vec v = \dfrac{2+\sqrt2}{2}}$ Jawaban A [collapse] Soal Nomor 12 Diketahui $\vec a, \vec b$, dan $\vec c$ adalah vektor satuan yang membentuk sudut $60^{\circ}$ satu sama lain. Nilai $\vec a + \vec b \bullet \vec b-\vec c = \cdots \cdot$ A. $\dfrac18$ C. $\dfrac12$ E. $2$ B. $\dfrac14$ D. $1$ Pembahasan Karena $\vec a, \vec b$, dan $\vec c$ vektor satuan, maka $\vec a = \vec b = \vec c = 1$ dan juga diketahui $\angle\vec a, \vec b = \angle\vec a, \vec c = \angle\vec b, \vec c = 60^{\circ}$. Untuk itu, $$\begin{aligned} & \vec a + \vec b \bullet \vec b-\vec c \\ & = \vec a \bullet \vec b-\vec a \bullet \vec c + \vec b \bullet \vec b-\vec b \bullet \vec c \\ & = \vec a \cdot \vec b \cos 60^{\circ}-\vec a \cdot \vec c \cos 60^{\circ} + \vec b \cdot \vec b \cos 0 ^{\circ}-\vec b \cdot \vec c \cos 60^{\circ} \\ & = 11\left\dfrac12\right-11\left\dfrac12\right + \\ & 111-11\left\dfrac12\right \\ & = \dfrac12-\dfrac12 + 1-\dfrac12 = \dfrac12 \end{aligned}$$Jadi, $\boxed{\vec a + \vec b \bullet \vec b-\vec c = \dfrac12}$ Jawaban C [collapse] Soal Nomor 13 Diketahui titik $A1,0,-2,B2,1,-1$, dan $C2,0,-3$. Sudut antara vektor $\vec{AB}$ dengan $\vec{AC}$ adalah $\cdots \cdot$ A. $30^{\circ}$ D. $90^{\circ}$ B. $45^{\circ}$ E. $120^{\circ}$ C. $60^{\circ}$ Pembahasan Untuk $A1,0,-2,B2,1,-1$, dan $C2,0,-3$, diperoleh $$\begin{aligned} \vec{AB} & = B- A = 2,1,-1-1,0,-2 \\ & = 1,1,1 \\ \vec{AC} & = C- A = 2,0,-3-1,0,-2 \\ & = 1, 0,-1 \end{aligned}$$Misalkan sudut yang terbentuk oleh kedua vektor adalah $\theta$. Kosinus sudut kedua vektor itu dinyatakan oleh $$\begin{aligned} \cos \theta & = \dfrac{\vec{AB} \bullet \vec{AC}} {\vec {AB} \cdot \vec {AC}} \\ & = \dfrac{1,1,1 \bullet 1,0,-1} {\sqrt{1^2+1^2+1^2} \cdot \sqrt{1^2+0^2+-1^2}} \\ & = \dfrac{1+0+-1}{\sqrt{3} \cdot \sqrt{2}} \\ & = \dfrac{0}{\sqrt6} = 0 \end{aligned}$$Dari $\cos \theta = 0$, diperoleh $\boxed{\theta = 90^{\circ}}$ Jawaban D [collapse] Baca Juga Materi, Soal, dan Pembahasan – Aturan Sinus, Aturan Kosinus, dan Luas Segitiga Menurut Trigonometri Soal Nomor 14 Diketahui vektor $\vec a = 2,-3, 1$ dan $\vec b = 1,-2,3$. Nilai sinus sudut antar vektor $\vec a$ dan $\vec b$ adalah $\cdots \cdot$ A. $\dfrac57$ D. $\dfrac{5}{11}\sqrt3$ B. $\dfrac{11}{14}$ E. $\dfrac{2}{7}\sqrt6$ C. $\dfrac{5}{14}\sqrt3$ Pembahasan Misalkan $\theta$ merupakan besar sudut yang terbentuk oleh kedua vektor tersebut. Kosinus sudut kedua vektor itu dinyatakan oleh $$\begin{aligned} & \cos \theta = \dfrac{\vec a \bullet \vec b} {\vec a \cdot \vec b} \\ & = \dfrac{2,-3,1 \bullet 1,-2,3} {\sqrt{2^2+-3^2+1^2} \cdot \sqrt{1^2+-2^2+3^2}} \\ & = \dfrac{2+6+3}{\sqrt{14} \cdot \sqrt{14}} \\ & = \dfrac{11}{14} \end{aligned}$$Dengan menggunakan Identitas Pythagoras dalam trigonometri $\boxed{\sin \theta = \sqrt{1-\cos^2 \theta}}$ diperoleh $\begin{aligned} \sin \theta & = \sqrt{1- \left\dfrac{11}{14}\right^2} \\ & = \sqrt{1-\dfrac{121}{196}} = \sqrt{\dfrac{75}{196}} = \dfrac{5\sqrt3}{14} \end{aligned}$ Jadi, nilai sinus sudut antar vektor $\vec a$ dan $\vec b$ adalah $\boxed{\dfrac{5\sqrt3}{14}}$ Jawaban C [collapse] Soal Nomor 15 Diketahui vektor $\vec a =\widehat{i}+\widehat{j}$ dan $\vec b =-\widehat{i}+\widehat{k}$. Nilai sinus sudut antara kedua vektor tersebut adalah $\cdots \cdot$ A. $-\dfrac12$ D. $\dfrac12\sqrt2$ B. 0 E. $\dfrac12\sqrt3$ C. $\dfrac12$ Pembahasan Bila vektor dinyatakan dalam bentuk koordinat, maka $\vec a = 1, 1, 0$ dan $\vec b = -1, 0, 1$. Misalkan sudut yang terbentuk oleh kedua vektor adalah $\theta$. Kosinus sudut kedua vektor itu dinyatakan oleh $$\begin{aligned} & \cos \theta = \dfrac{\vec a \bullet \vec b} {\vec a \cdot \vec b} \\ & = \dfrac{1,1,0 \bullet -1,0,1} {\sqrt{1^2+1^2+0^2} \cdot \sqrt{-1^2+0^2+1^2}} \\ & = \dfrac{-1+0+0}{\sqrt{2} \cdot \sqrt{2}} =-\dfrac{1}{2} \end{aligned}$$Dengan menggunakan Identitas Pythagoras dalam trigonometri $\boxed{\sin \theta = \sqrt{1-\cos^2 \theta}}$ diperoleh $\begin{aligned} \sin \theta & = \sqrt{1-\left-\dfrac{1}{2}\right^2} \\ & = \sqrt{1-\dfrac14} = \sqrt{\dfrac34} = \dfrac12\sqrt3 \end{aligned}$ Jadi, nilai sinus sudut antar vektor $\vec a$ dan $\vec b$ adalah $\boxed{\dfrac12\sqrt3}$ Jawaban E [collapse] Soal Nomor 16 Panjang vektor $\vec a, \vec b$, dan $\vec a-\vec b$ berturut-turut adalah $3, 4$, dan $\sqrt{37}$. Besar sudut antara vektor $\vec a$ dan vektor $\vec b$ adalah $\cdots \cdot$ A. $30^{\circ}$ D. $120^{\circ}$ B. $45^{\circ}$ E. $150^{\circ}$ C. $60^{\circ}$ Pembahasan Diketahui $\begin{aligned} \vec a & = 3 \\ \vec b &= 4 \\ \vec a-\vec b & = \sqrt{37} \end{aligned}$ Dengan menggunakan aturan kosinus pada vektor, diperoleh $$\begin{aligned} \vec a-\vec b & = \sqrt{\vec a^2 + \vec b^2- 2\vec a\vec b \cos \theta} \\ \text{Kuadratkan}&~\text{kedua ruas} \\ \sqrt{37}^2 & = 3^2 + 4^2-234 \cos \theta \\ 37 & = 9+16-24\cos \theta \\-24 \cos \theta & = 12 \\ \cos \theta & =-\dfrac{12}{24} =-\dfrac12 \end{aligned}$$Untuk $\cos \theta =-\dfrac12$, diperoleh $\theta = 120^{\circ}$ Jadi, besar sudut antara vektor $\vec a$ dan vektor $\vec b$ adalah $\boxed{120^{\circ}}$ Jawaban D [collapse] Soal Nomor 17 Diketahui titik $A5, 1, 3, B2,-1,-1$, dan $C4, 2,-4$. Besar sudut $ABC = \cdots \cdot$ A. $\pi$ C. $\dfrac{\pi}{3}$ E. $0$ B. $\dfrac{\pi}{2}$ D. $\dfrac{\pi}{6}$ Pembahasan Besar sudut $ABC$ dapat ditentukan dengan menerapkan rumus $\boxed{\cos \theta = \dfrac{\vec {AB} \bullet \vec{BC}}{\vec {AB} \cdot \vec {BC}}}$ Perhatikan bahwa, $\begin{aligned}\vec{AB} & = B- A \\ & = 2,-1,-1-5, 1, 3 \\ & = -3,-2,-4 \end{aligned}$ dan $\begin{aligned}\vec{BC} & = C- B \\ & = 4, 2,-4-2,-1,-1 \\ & = 2, 3,-3 \end{aligned}$ Panjang vektor $\vec{AB}$ dinyatakan oleh $\begin{aligned} \vec{AB} & = \sqrt{-3^2+-2^2+-4^2} \\ & = \sqrt{9+4+16} \\ & = \sqrt{29} \end{aligned}$ Panjang vektor $\vec{BC}$ dinyatakan oleh $\begin{aligned}\vec{BC} & = \sqrt{2^2+3^2+-3^2} \\ & = \sqrt{4+9+9} \\ &= \sqrt{22} \end{aligned}$ Dengan demikian, diperoleh $\begin{aligned} \cos \theta & = \dfrac{\vec {AB} \bullet \vec{BC}}{\vec {AB}\cdot \vec {BC}} \\ & = \dfrac{-3,-2,-4 \bullet 2, 3,-3}{\sqrt{29} \cdot \sqrt{22}} \\ & = \dfrac{-6-6+12}{\sqrt{29} \cdot \sqrt{22}} \\ & = 0 \end{aligned}$ Karena $\cos \theta = 0$, maka $\boxed{\theta = 90^{\circ}=\dfrac{\pi}{2}}$ Jawaban B [collapse] Soal Nomor 18 Diketahui $\vec a=2\sqrt3$ dan $\vec b=4$. Jika vektor $\vec a$ tegak lurus dengan $\vec a +\vec b$, maka sudut antara vektor $\vec a$ dengan vektor $\vec b$ adalah $\cdots \cdot$ A. $150^{\circ}$ D. $60^{\circ}$ B. $120^{\circ}$ E. $30^{\circ}$ C. $90^{\circ}$ Pembahasan Diketahui $\vec a = 2\sqrt3; \vec b = 4.$ Karena vektor $\vec a$ tegak lurus dengan $\vec a +\vec b$, maka $\vec a \bullet \vec a + \vec b = 0$. Dari sini, kita peroleh $$\begin{aligned} \vec a \bullet \vec a + \vec a \bullet \vec b & = 0 \\ \vec a \vec a \cos 0^{\circ} + \vec a\vec b \cos \theta & = 0 \\ 2\sqrt{3} \cdot 2\sqrt3 \cdot 1 + 2\sqrt3 \cdot 4 \cdot \cos \theta & = 0 \\ 12+8\sqrt3 \cos \theta & = 0 \\ \cos \theta & =-\dfrac{12}{8\sqrt{3}} \\ & =-\dfrac{3}{2\sqrt3} \times \dfrac{\sqrt3}{\sqrt3} \\ & =-\dfrac{\cancel{3}\sqrt3}{2\cancel{3}} \\ & =-\dfrac12\sqrt3 \end{aligned}$$Karena $\cos \theta =-\dfrac12\sqrt3$, maka nilai $\boxed{\theta = 150^{\circ}}$ Jawaban A [collapse] Soal Nomor 19 Diketahui limas $ mempunyai koordinat $T1, 0, 3, A0, 0, 0$, $B5, 0, 0$, dan $C1, 4, 0$. Jika $\theta$ merupakan sudut antara $\vec{TB}$ dan $\vec{TC}$, maka nilai $\cos \theta$ adalah $\cdots \cdot$ A. $-\dfrac{9}{25}$ D. $\dfrac{3}{5}$ B. $-\dfrac{3}{5}$ E. $\dfrac{9}{25}$ C. $\dfrac{3}{25}$ Pembahasan Dari koordinat titik yang diberikan, diketahui $\begin{aligned} \vec{TB} & = B- T = 5, 0, 0- 1, 0, 3 \\ & = 4,0,-3 \\ \vec{TC} & = C- T = 1,4,0-1,0,3 \\ & =0,4,-3 \end{aligned}$ Panjang kedua vektor tersebut dinyatakan oleh $\begin{aligned} \vec{TB} & = \sqrt{4^2+0^2+-3^2} = 5 \\\vec{TC} & = \sqrt{0^2+4^2+-3^2} = 5 \end{aligned}$ Kosinus dari sudut antara $\vec{TB}$ dan $\vec{TC}$ dapat ditentukan dengan menggunakan aturan kosinus pada vektor. $$\begin{aligned} \cos \theta & = \dfrac{\vec {TB} \bullet \vec{TC}}{\vec {TB} \cdot \vec {TC}} \\ & = \dfrac{4,0,-3 \bullet 0, 4,-3}{5 \cdot 5} \\ & = \dfrac{40 + 04 + -3-3}{25} = \dfrac{9}{25} \end{aligned}$$Jadi, nilai $\boxed{\cos \theta = \dfrac{9}{25}}$ Jawaban E [collapse] Soal Nomor 20 Jika sudut antara vektor $\vec a = \widehat{i}+\widehat{j}-r\widehat{k}$ dan $\vec b = r\widehat{i}-r\widehat{j}-2\widehat{k}$ adalah $60^{\circ}$. Nilai $r$ positif yang memenuhi adalah $\cdots \cdot$ A. $\sqrt2$ C. $0$ E. $-\sqrt2$ B. $1$ D. $-1$ Pembahasan Diketahui $\vec a = 1, 1,-r, \vec b = r,-r,-2$ dan $\angle\vec a, \vec b = \theta = 60^{\circ}.$ Dengan menggunakan aturan kosinus pada vektor, diperoleh $$\begin{aligned} \cos \theta & = \dfrac{\vec a \bullet \vec b}{\vec a \cdot \vec b} \\ & = \dfrac{1,1,-r \bullet r,-r,-2}{\sqrt{1^2+1^2+-r^2} \cdot \sqrt{r^2+-r^2+-2^2}} \\ \cos 60^{\circ} & = \dfrac{1r + 1-r + -r-2}{\sqrt{2+r^2} \cdot \sqrt{2r^2+4}} \\ \dfrac12 & = \dfrac{2r}{\sqrt{2r^4+8r^2+8}} \\ 4r & = \sqrt{2r^4+8r^2+8} \\ & \text{Kuadratkan}~\text{kedua ruas} \\ 16r^2 & = 2r^4+8r^2+8 \\ 0 & = 2r^4-8r^2+8 \\ 0 & = r^4-4r^2+4 \\ 0 & = r^2-2r^2-2 \end{aligned}$$Didapat $r^2 = 2 \Leftrightarrow r = \pm \sqrt2$ Karena $r$ dikatakan bernilai positif, maka $\boxed{r = \sqrt2}$ Jawaban A [collapse] Soal Nomor 21 Diketahui vektor $\vec u =0,2,2$ dan $\vec v =-2,0,2$. Proyeksi vektor ortogonal $\vec u$ pada $\vec v$ adalah $\cdots \cdot$ A. $-\widehat i+\widehat k$ B. $-\widehat i+ \dfrac12 \widehat k$ C. $-\widehat i- \widehat k$ D. $-2i+ \widehat k$ E. $2\widehat i- \widehat k$ Pembahasan Proyeksi ortogonal vektor $\vec u$ pada $\vec v$ dinyatakan oleh $\boxed{\vec u_{\vec v} = \dfrac{\vec u \bullet \vec v} {\vec v^2} \cdot \vec v}$ Untuk $\vec u = 0,2,2$ dan $\vec v =-2,0,2,$ diperoleh $$\begin{aligned} \vec u_{\vec v} & = \dfrac{0,2,2 \bullet -2,0,2} {\sqrt{-2^2+0^2+2^2}^2} \cdot -2,0,2 \\ & = \dfrac{0-2+20+22} {4+4} \cdot -2,0,2 \\ & = \dfrac{4}{8} \cdot -2,0,2 \\ & = -1,0,1 \end{aligned}$$Jadi, proyeksi ortogonal vektor $\vec u = 0,2,2$ pada $\vec v=-2,0,2$ adalah $-1,0,1$ atau bila dinyatakan dalam vektor komponen menjadi $\boxed{-\widehat i + \widehat k}$ Jawaban A [collapse] Soal Nomor 22 Proyeksi ortogonal vektor $\vec a = 4\widehat{i}+\widehat{j}+3\widehat{k}$ pada $\vec b = 2\widehat{i}+\widehat{j}+3\widehat{k}$ adalah $\cdots \cdot$ A. $\dfrac{13}{14}2\widehat{i}+\widehat{j}+3\widehat{k}$ B. $\dfrac{15}{14}2\widehat{i}+\widehat{j}+3\widehat{k}$ C. $\dfrac872\widehat{i}+\widehat{j}+3\widehat{k}$ D. $\dfrac972\widehat{i}+\widehat{j}+3\widehat{k}$ E. $4\widehat{i}+2\widehat{j}+6\widehat{k}$ Pembahasan Proyeksi ortogonal vektor $\vec a$ pada $\vec b$ dinyatakan oleh $\boxed{\vec a_{\vec b} = \dfrac{\vec a \bullet \vec b} {\vec b^2} \cdot \vec b}$ Untuk $\vec a = 4,1,3$ dan $\vec b =2,1,3$, diperoleh $$\begin{aligned} \vec a_{\vec b} & = \dfrac{4,1,3 \bullet 2,1,3} {\sqrt{2^2+1^2+3^2}^2} \cdot 2,1,3 \\ & = \dfrac{42+11+33} {4+1+9} \cdot 2,1,3 \\ & = \dfrac{18}{14} \cdot 2,1,3 \\ & = \dfrac972\widehat{i}+\widehat{j}+3\widehat{k} \end{aligned}$$Jadi, proyeksi ortogonal vektor $\vec a = 4,1,3$ pada $\vec b=2,1,3$ adalah $\boxed{\dfrac972\widehat{i}+\widehat{j}+3\widehat{k}}$ Jawaban D [collapse] Soal Nomor 23 Diketahui vektor $\vec a = \widehat{i}-5\widehat{j}+2\widehat{k}$ dan $\vec b = 8\widehat{i}+m\widehat{k}$. Panjang proyeksi vektor $\vec b$ pada $\vec a$ adalah $\dfrac{1}{5}\vec a$. Vektor proyeksi ortogonal $\vec b$ pada $\vec a$ adalah $\cdots \cdot$ A. $-\dfrac85 \widehat i-5\widehat j+\dfrac65 \widehat k$ B. $\widehat i+2 \widehat j+5 \widehat k$ C. $\widehat i+5\widehat j+2\widehat k$ D. $\dfrac15 \widehat i- \widehat j+\dfrac25 \widehat k$ E. $\dfrac15 \widehat i+\widehat j+2\widehat k$ Pembahasan Diketahui $\begin{aligned} \vec a & = 1,-5, 2 \\ \vec b & = 8,0,m \\ \vec b_{\vec a} & = \dfrac15\vec a \end{aligned}$ Akan dicari nilai $m$ dengan menggunakan rumus panjang proyeksi vektor. $$\begin{aligned} \vec b_{\vec a} & = \dfrac{\vec b \bullet \vec a}{\vec a} \\ \dfrac15\vec a & = \dfrac{8,0,m \bullet 1,-5,2}{\vec a} \\ \dfrac15\sqrt{1^2+-5^2+2^2} & = \dfrac{81+0-5+m2}{\sqrt{1^2+-5^2+2^2}} \\ \dfrac15\sqrt{30} & = \dfrac{8+2m}{\sqrt{30}} \\ 40+10m & = 30 \\ 10m & =-10 \\ m & =-1 \end{aligned}$$Dengan demikian, vektor proyeksi $\vec b$ pada $\vec a$ dinyatakan oleh $\begin{aligned} \vec b_{\vec a} & = \dfrac{\vec b \bullet \vec a}{\vec a^2} \cdot \vec a \\ & = \dfrac{8+2m}{\sqrt{30}^2} \cdot \widehat{i}-5\widehat{j}+2\widehat{k} \\ & = \dfrac{8+2-1}{30} \cdot \widehat{i}-5\widehat{j}+2\widehat{k} \\ & = \dfrac15\widehat{i}-5\widehat{j}+2\widehat{k} \\ & = \;\boxed{\dfrac15\widehat{i}-\widehat{j}+\dfrac25\widehat{k}}\end{aligned}$ Jawaban D [collapse] Soal Nomor 24 Diketahui bahwa $\vec a=\sqrt{3},\vec b=1$, dan $\vec a-\vec b=1$. Panjang vektor $\vec a + \vec b$ adalah $\cdots \cdot$ A. $\sqrt3$ D. $2\sqrt2$ B. $\sqrt5$ E. $3$ C. $\sqrt7$ Pembahasan Dengan menerapkan aturan kosinus pada vektor, diperoleh $$\begin{aligned} \vec a-\vec b & = 1 \\ \sqrt{\vec a^2 + \vec b^2- 2\vec a\vec b \cos \theta} & = 1 \\ \text{Kuadratkan kedua ruas} & \\ \vec a^2 + \vec b^2-2\vec a\vec b \cos \theta & = 1 \\ \sqrt3^2 + 1^2-2\sqrt31 \cos \theta & = 1 \\ 4-2\sqrt3 \cos \theta & = 1 \\ \cos \theta & = \dfrac{-3}{-2\sqrt3} \\ \cos \theta & = \dfrac{3}{2\sqrt3} \end{aligned}$$Dengan demikian, $$\begin{aligned} \vec a + \vec b & = \sqrt{\vec a^2 + \vec b^2 + 2\vec a\vec b \cos \theta} \\ & = \sqrt{\sqrt3^2 + 1^2 + \cancel{2\sqrt3}1 \times \dfrac{3}{\cancel{2\sqrt3}}} \\ & = \sqrt{3+1+3} =\sqrt7 \end{aligned}$$Jadi, panjang vektor $\vec a + \vec b$ adalah $\boxed{\sqrt7}$ Jawaban C [collapse] Soal Nomor 25 Misalkan panjang vektor $\vec a$ adalah $1$ dan panjang vektor $\vec b$ adalah 4 serta $\vec a \bullet \vec b =3$. Panjang vektor $2 \vec a- \vec b$ adalah $\cdots \cdot$ A. $\sqrt2$ D. $\sqrt3$ B. $2\sqrt2$ E. $2\sqrt3$ C. $3$ Pembahasan Diketahui $\begin{aligned} \vec a & = 1 \\ \vec b & = 4 \\ \vec a \bullet \vec b & = 3 \end{aligned}$ Kosinus sudut antara $\vec a$ dan $\vec b$ dinyatakan oleh $\cos \theta = \dfrac{\vec a \bullet \vec b}{\vec a \cdot \vec b} = \dfrac{3}{1 \cdot 4}= \dfrac34$ Karena $\vec {2a}$ merupakan perpanjangan dari $\vec a$, maka sudut yang terbentuk oleh $\vec {2a}$ dan $\vec b$ sama dengan sudut yang terbentuk oleh $\vec a$ dan $\vec b$, yaitu $\theta$ sehingga dengan menggunakan aturan kosinus pada vektor, diperoleh $$\begin{aligned} 2\vec a-\vec b & = \sqrt{2a^2+b^2-22ab \cos \theta} \\ & = \sqrt{21^2 + 4^2-22\cancel{4} \dfrac{3}{\cancel{4}}} \\ & = \sqrt{4+16-12} = \sqrt8 = 2\sqrt2 \end{aligned}$$Jadi, panjang vektor $2 \vec a- \vec b$ adalah $\boxed{2\sqrt2}$ Jawaban B [collapse] Soal Nomor 26 Diketahui vektor $\vec a =2,-2\sqrt2,4, \vec b = -1,p,q$, dan $\vec c=3,\sqrt2,-1$. Jika vektor $\vec a$ berlawanan arah dengan vektor $\vec b$, nilai $\vec a- \vec b \bullet \vec b- \vec c = \cdots \cdot$ A. $-18$ D. $6$ B. $-12$ E. $18$ C. $-6$ Pembahasan Diketahui $\begin{aligned} \vec a & = 2,-2\sqrt2,4 \\ \vec b & = -1, p, q \\ \vec c & = 3,\sqrt2,-1 \end{aligned}$ Karena $\vec a$ berlawanan arah dengan $\vec b$, maka haruslah ada skalar $k < 0$ sehingga memenuhi $\vec a = k\vec b \Rightarrow 2,-2\sqrt2, 4 = k-1,p,q.$ Dari absis, kita peroleh $2 =-k \Leftrightarrow k =-2.$ Dengan demikian, $-2\sqrt2 =-2p \Leftrightarrow p = \sqrt2$ dan $4 =-2q \Leftrightarrow q =-2$ sehingga $\vec b = -1, \sqrt2,-2.$ Untuk itu, $\begin{aligned} & \vec a- \vec b \bullet \vec b- \vec c \\ & = [2,-2\sqrt2, 4- -1, \sqrt2,-2] \\ & \bullet [-1, \sqrt2,-2- 3, \sqrt2,-1] \\ & = 3,-3\sqrt2, 6 \bullet -4, 0,-1 \\ & = 3-4 + -3\sqrt20 + 6-1 \\ & =-12 + 0- 6 =-18 \end{aligned}$ Jadi, nilai $\boxed{\vec a- \vec b \bullet \vec b- \vec c=-18}$ Catatan Skalar yang dimaksud di sini adalah bilangan real. Jawaban A [collapse] Soal Nomor 27 Jika $\vec a + \vec b= \widehat{i}-\widehat{j}+4\widehat{k}$ dan $\vec a-\vec b = \sqrt{14}$, maka $\vec a \bullet \vec b = \cdots \cdot$ A. $0$ C. $\dfrac12$ E. $2$ B. $\dfrac14$ D. $1$ Pembahasan Karena $\vec a + \vec b= \widehat{i}-\widehat{j}+4\widehat{k}$, maka panjangnya adalah $\begin{aligned} \vec a + \vec b & = \sqrt{1^2+-1^2+4^2} \\ & = \sqrt{18} \end{aligned}$ Perhatikan bahwa, $$\begin{aligned} \vec a- \vec b^2 & = \vec a^2 + \vec b^2- 2\vec a\vec b \cos \theta = 14 \\ \vec a + \vec b^2 & = \vec a^2 + \vec b^2 + 2\vec a\vec b \cos \theta = 18 \end{aligned}$$Kurangi kedua persamaan di atas sehingga diperoleh $\begin{aligned}-4\vec a\vec b \cos \theta & =-4 \\ \vec a\vec b \cos \theta & = 1 \\ \vec a \bullet \vec b & = 1 \end{aligned}$ Jadi, perkalian titik dari vektor $\vec a$ dan $\vec b$ adalah $\boxed{\vec a \bullet \vec b = 1}$ Jawaban D [collapse] Soal Nomor 28 Diketahui vektor $\vec k=9,0,-6, \vec l=2,4,-1$, $\vec m =2,1,2$, dan $\vec n=1,-3,-2$. Jika $\vec k = a \vec l + b \vec m + c \vec n$, maka $2a+5b-7c=\cdots \cdot$ A. $-12$ C. $0$ E. $12$ B. $-5$ D. $1$ Pembahasan Diketahui $\begin{aligned} \vec k & = 9,0,-6 \\ \vec l & =2,4,-1 \\ \vec m & =2,1,2 \\ \vec n & =1,-3,-2 \end{aligned}$ Dengan menggunakan operasi penjumlahan pada vektor, diperoleh $$\begin{aligned} \vec k & = a \vec l + b \vec m + c \vec n \\ 9, 0,-6 & = a2,4,-1+b2,1,2+c1,-3,-2 \\ 9, 0,-6 & = 2a+2b+c, 4a+b-3c,-a+2b-2c \end{aligned}$$Dari sini, diperoleh SPLTV $\begin{cases} 2a+2b+c = 9 \\ 4a+b-3c = 0 \\-a+2b-2c=-6 \end{cases}$ SPLTV di atas dapat diselesaikan dengan banyak cara seperti Metode Substitusi/Eliminasi, Aturan Cramer, Aturan Invers, Eliminasi Gauss/Jordan, dan sebagainya. Penyelesaian SPLTV di atas adalah $a=2, b=1,c=3$. Untuk itu, $\begin{aligned} 2a+5b-7c & =22+51-73\\ & =4+5-21=-12 \end{aligned}$ Jadi, nilai dari $\boxed{2a+5b-7c=-12}$ Jawaban A [collapse] Baca Juga Soal dan Pembahasan- SPLTV Soal Nomor 29 Jika $\vec u + \vec v$ tegak lurus dengan $\vec u-\vec v$, maka pernyataan berikut ini yang paling tepat adalah $\cdots \cdot$ A. $\vec u + \vec v=\vec u-\vec v$ B. $\vec u=\vec v$ C. $\vec u = \vec v$ D. arah $\vec u$ = arah $\vec v$ E. $\vec u$ tegak lurus dengan $\vec v$ Pembahasan Karena $\vec u + \vec v$ tegak lurus dengan $\vec u-\vec v$, maka berlaku $\begin{aligned} \vec u + \vec v \bullet \vec u + \vec v & = 0 \\ \vec u \bullet \vec u-\vec v \bullet \vec v & = 0 \\ \vec u^2 \cos 0^{\circ}-\vec v^2 \cos 0^{\circ} & = 0 \\ \vec u^2 & = \vec v^2 \end{aligned}$ Karena masing-masing $\vec u$ dan $\vec v$ menyatakan panjang vektor, maka nilainya tak mungkin negatif sehingga didapat $\vec u = \vec v$. Jawaban B [collapse] Soal Nomor 30 Diketahui titik $A2,1,-4,B2,-4,6$, dan $C-2,5,4$. Titik $P$ membagi $AB$ sehingga $APPB=32$. Vektor yang diawali oleh $\vec{PC}$ adalah $\cdots \cdot$ A. $-4,3,-6$ D. $4,-7,-2$ B. $-4,-7,2$ E. $-4,7,2$ C. $-4,3,6$ Pembahasan Titik $P$ berada pada $AB$ dengan $AP PB = 3 2$ sehingga koordinat titik $P$ dapat ditentukan sebagai berikut. 1 Absis $\begin{aligned} x_P & = \dfrac{1}{3+2}2x_A + 3x_B \\ & = \dfrac1522+32 = 2 \end{aligned}$ 2 Ordinat $\begin{aligned} y_P & = \dfrac{1}{3+2}2y_A + 3y_B \\ & = \dfrac1521+3-4 =-2 \end{aligned}$ 3 Aplikat $\begin{aligned} z_P & = \dfrac{1}{3+2}2z_A + 3z_B \\ & = \dfrac152-4+36 = 2 \end{aligned}$ Jadi, koordinat titik $P$ adalah $2,-2, 2$. Dengan demikian, $$\boxed{\begin{aligned} \vec PC & = C- P = -2, 5, 4-2,-2, 2 \\ & = -4, 7, 2 \end{aligned}}$$Jawaban E [collapse] Soal Nomor 31 $ABCD$ adalah segi empat sembarang. Titik $S$ dan $T$ masing-masing titik tengah $AC$ dan $BD$. Jika $\vec{ST} = u$, maka $\vec{AB} + \vec{AD} + \vec{CB} +\vec{CD} = \cdots \cdot$ A $\vec u$ D. $4 \vec u$ B. $2 \vec u$ E. $8 \vec u$ C. $3 \vec u$ Pembahasan Cara 1 Perhatikan bahwa $\begin{aligned} \vec{AB} & = \vec {AS} + \vec {ST} + \vec {TB} \\ \vec{AD} & = \vec {AS} + \vec {ST} + \vec {TD} \\ \vec{CB} & = \vec {CS} + \vec {ST} + \vec {TB} \\ \vec{CD} & = \vec {CS} + \vec {ST} + \vec {TD} \end{aligned}$ Karena $T$ titik tengah $BD$, maka $\vec {TB}$ dan $\vec{TD}$ memiliki panjang yang sama dan arahnya berlawanan sehingga $\vec{TB} =-\vec{TD}$. Karena $S$ titik tengah $AC$, maka $\vec {AS}$ dan $\vec{CS}$ juga memiliki panjang yang sama dan arahnya berlawanan sehingga $\vec{AS} =-\vec{CS}$. Dengan demikian, apabila keempat persamaan di atas dijumlah, diperoleh $\vec{AB} + \vec{AD} + \vec{CB} +\vec {CD} = 4\vec{ST} = 4\vec u.$ Cara 2 Misal vektor posisi titik $A,B,C,D$ berturut-turut adalah $\vec a, \vec b, \vec c, \vec d$. Karena $S$ di tengah $AC$, maka vektor posisi $S$ adalah $\vec s = \dfrac{\vec a + \vec c}{2}$, dan juga karena $T$ di tengah $BD$, maka vektor posisi $T$ adalah $\vec t = \dfrac{\vec b + \vec d}{2}$. Dengan demikian, $\vec{ST} = \vec u = \vec t-\vec s = \dfrac{\vec b+\vec d}{2}-\dfrac{\vec a+ \vec c}{2}.$ Ini berarti, $$\begin{aligned} & \vec{AB} + \vec{AD} + \vec{CB} +\vec {CD} \\ & = \vec b- \vec a + \vec d-\vec a + \vec b-\vec c + \vec d-\vec c \\ & = 2\vec b + \vec d-2\vec a + \vec c \\ & = 4\left\dfrac{\vec b+ \vec d}{2}-\dfrac{\vec a+ \vec c}{2}\right = 4\vec u \end{aligned}$$Jadi, $\boxed{\vec{AB} + \vec{AD} + \vec{CB} +\vec {CD} =4 \vec u}$ Jawaban D [collapse] Soal Nomor 32 Diketahui tiga buah vektor, yakni $\vec u = 3\widehat i-\widehat j+2 \widehat k, \vec v = \widehat i + n \widehat j-2\widehat k$, dan $\vec w = \widehat i + m\widehat j-p \widehat k$ saling tegak lurus. Nilai $m+n+p=\cdots \cdot$ A. $\dfrac12$ C. $1\dfrac12$ E. $2\dfrac12$ B. $1$ D. $2$ Pembahasan Diketahui $\begin{aligned} \vec u & = 3,-1, 2 \\ \vec v & = 1, n,-2 \\ \vec w & = 1, m,-p \end{aligned}$ Karena $\vec u$ dan $\vec v$ saling tegak lurus, maka $\begin{aligned} \vec u \bullet \vec v & = 0 \\ 3,-1,2 \bullet 1,n,-2 & = 0 \\ 31 + -1n+2-2 & = 0 \\ 3-n-4 & = 0 \\ n & =-1 \end{aligned}$ Ini berarti, $\vec v = 1,-1,-2$. Karena $\vec u$ dan $\vec w$ saling tegak lurus, maka $\begin{aligned} \vec u \bullet \vec w & = 0 \\ 3,-1,2 \bullet 1,m,-p & = 0 \\ 31 + -1m+2-p & = 0 \\ 3-m-2p & = 0 \\ m+2p = 3 \end{aligned}$ Karena $\vec u$ dan $\vec w$ saling tegak lurus, maka $\begin{aligned} \vec v \bullet \vec w & = 0 \\ 1,-1,-2 \bullet 1,m,-p & = 0 \\ 11 + -1m+-2-p & = 0 \\ 1-m+2p & = 0 \\-m+2p =-1 \end{aligned}$ Diperoleh SPLDV $\begin{cases} m+2p = 3 \\-m+2p=-1 \end{cases}$ yang memiliki penyelesaian $m = 2$ dan $p = \dfrac12$. Jadi, nilai $\boxed{m+n+p=2+-1+\dfrac12 = 1\dfrac12}$ Jawaban C [collapse] Soal Nomor 33 Jika $\vec{a}+\vec{b}+\vec{c} = 0$, $a = 3$, $b = 5$, dan $c = 7$, maka besar sudut antara $\vec{a}$ dan $\vec{b}$ sama dengan $\cdots \cdot$ A. $\dfrac{\pi}{6}$ C. $\dfrac{\pi}{3}$ E. $\dfrac{2\pi}{3}$ B. $\dfrac{\pi}{4}$ D. $\dfrac{\pi}{2}$ Pembahasan Perhatikan bahwa $\vec{a}+\vec{b}+\vec{c} = 0$ ekuivalen dengan $\vec{a} + \vec{b} = -\vec{c}$ dengan representasi gambarnya berupa segitiga sembarang sebagai berikut. Misalkan sudut yang dibentuk oleh $\vec{a}$ dan $\vec{b}$ adalah $\theta$, maka dengan menggunakan aturan kosinus, diperoleh $\begin{aligned} c^2 & = a^2 + b^2-2a b \cos \theta \\ 7^2 & = 3^2+5^2-235 \cos \theta \\ 49 & = 9+25-30 \cos \theta \\ 49 & = 34-30 \cos \theta \\ 15 & = -30 \cos \theta \\ \cos \theta & = -\dfrac{15}{30} = -\dfrac12 \end{aligned}$ Diperoleh $\theta = 120^{\circ}$ atau $\theta = \dfrac{2\pi}{3}$. Jadi, besar sudut antara $\vec{a}$ dan $\vec{b}$ sama dengan $\boxed{\dfrac{2\pi}{3}}$ Jawaban E [collapse] Soal Nomor 34 Diberikan vektor $\vec{u} = a,b,c$ dan $\vec{v} = b, a, 3$. Jika $\vec {u} \cdot \vec{v} = \vec{u}^2$ dan $\vec{u}-\vec{v}^2 = 5$, maka nilai $c^3+2c+2$ yang mungkin adalah $\cdots \cdot$ A. $-2$ C. $2$ E. $14$ B. $-1$ D. $5$ Pembahasan Diketahui $\vec{u} = a,b,c~~~~\vec{v} = b, a, 3$. Karena $\vec {u} \cdot \vec{v} = \vec{u}^2$, maka berdasarkan definisi perkalian skalar vektor dan panjang vektor, diperoleh persamaan $$\begin{aligned} ab + ab + 3c & = a^2+b^2+c^2 \\ \color{blue}{a^2+b^2+c^2-2ab-3c} & = 0 \end{aligned}$$Karena $\vec{u}-\vec{v}^2 = 5$, maka kita peroleh $$\begin{aligned} a-b^2+b-a^2+c-3^2 & = 5 \\ 2a-b^2 + c-3^2 & = 5 \\ 2a^2-4ab+2b^2+c^2-6c+9 & = 5 \\ 2a^2+2b^2+c^2-4ab-6c & =-4 \\ 2\color{blue}{a^2+b^2+c^2-2ab-3c}-c^2 & =-4 \\ 20-c^2 & =-4 \\ c & = \pm 2 \end{aligned}$$Untuk $c = 2$, diperoleh $c^3+2c+2 = 2^3+22+2 = 14.$ Untuk $c=-2$, diperoleh $\begin{aligned} c^3+2c+2 & = -2^3+2-2+2 \\ & =-10. \end{aligned}$ Jadi, nilai $c$ yang mungkin adalah $\boxed{14~\text{atau}~-10}$ Jawaban E [collapse] Soal Nomor 35 Diketahui vektor-vektor $\vec u = b\widehat{i}+a\widehat{j}+9\widehat{k}$ dan $\vec v = a\widehat{i}-b\widehat{j}+a\widehat{k}$. Sudut antara vektor $\vec u$ dan $\vec v$ adalah $\theta$ dengan $\cos \theta = \dfrac{6}{11}$. Proyeksi ortogonal $\vec u$ pada $\vec v$ adalah $\vec p = 4\widehat{i}-2\widehat{j}+4\widehat{k}$. Nilai dari $b=\cdots \cdot$ A. $\sqrt2$ D. $4$ B. $2$ E. $4\sqrt2$ C. $2\sqrt2$ Pembahasan Diketahui $\begin{aligned} \vec u & = b, a, 9 \\ \vec v & = a,-b, a \\ \angle\vec u, \vec v & = \theta \\ \cos \theta & = \dfrac{6}{11} \\ \vec u_{\vec v} & = \vec p = 4,-2, 4 \end{aligned}$ Misalkan $n = \dfrac{\vec u \bullet \vec v} {\vec v^2}$. Dengan menggunakan rumus proyeksi ortogonal vektor, didapat $\begin{aligned} \vec u _{\vec v} & = n \cdot \vec v \\ 4,-2,4 & = na,-b, a \\ 4,-2,4 & = na,-nb, an \end{aligned}$ Dari sini, diperoleh $4=na$ dan $-2=-nb$. Kedua persamaan di atas dapat ditulis menjadi $n = \dfrac{a}{4}$ dan $n = \dfrac{2}{b}.$ Untuk itu, $\dfrac{a}{4} = \dfrac{2}{b} \Leftrightarrow a = 2b.$ Selanjutnya, dengan menggunakan aturan kosinus pada vektor, didapat $$\begin{aligned} \cos \theta & = \dfrac{\vec u \bullet \vec v}{\vec u \cdot \vec v} \\ \dfrac{6}{11} & = \dfrac{b, a, 9 \bullet a,-b, a}{\sqrt{b^2+a^2+9^2} \cdot \sqrt{a^2 + -b^2 + a^2}} \\ \dfrac{6}{11} & = \dfrac{ab- ab + 9a}{\sqrt{a^2+b^2+81} \cdot \sqrt{2a^2 + b^2}} \\ & \text{Substitusikan}~a = 2b \\ \dfrac{6}{11} & = \dfrac{92b}{\sqrt{2b^2+b^2+81} \cdot \sqrt{22b^2 +b^2}} \\ \dfrac{6}{11} & = \dfrac{18b}{\sqrt{5b^2+81} \cdot \sqrt{9b^2}} \\ \dfrac{6}{11} & = \dfrac{\cancelto{6}{18b}}{\sqrt{5b^2+81} \cdot \cancel{3b}} \\ 11 & = \sqrt{5b^2+81} \\ 121 & = 5b^2+81 \\ b^2 & = \dfrac{121-81}{5} = 8 \\ b & = 2\sqrt2 \end{aligned}$$Jadi, nilai $b$ adalah $\boxed{2\sqrt{2}}$ Jawaban C [collapse] Soal Nomor 36 Bangun $ABCD$ berikut merupakan trapesium dengan $AE=FB$. Jika $\vec{AB} = 3\vec{i}-3\vec{j}+4\vec{k}$ dan $\vec{AD} = \vec{i}-2\vec{j}+\vec{k}$, maka $\vec{DC} = \cdots \cdot$ A. $\dfrac{4}{17}\left3\vec{i}-3\vec{j}+4\vec{k}\right$ B. $\dfrac{13}{34}\left3\vec{i}-3\vec{j}+4\vec{k}\right$ C. $\dfrac{13}{17}\left3\vec{i}-3\vec{j}+4\vec{k}\right$ D. $\dfrac{5}{11}\left3\vec{i}-3\vec{j}+4\vec{k}\right$ E. $\dfrac{2}{11}\left3\vec{i}-3\vec{j}+4\vec{k}\right$ Pembahasan Diketahui $\vec{AB} = 3, -3, 4$ dan $\vec{AD} = 1, -2, 1$. Proyeksi vektor ortogonal $\vec{AD}$ pada $\vec{AB}$ dinyatakan oleh $$\begin{aligned} \vec{AE} & = \dfrac{\vec{AD} \bullet \vec{AB}}{\vec{AB}^2} \cdot \vec{AB} \\ & = \dfrac{1, -2, 1 \bullet 3, -3, 4}{3^2+-3^2+4^2} \cdot \vec{AB} \\ & = \dfrac{1 \cdot 3 + -2 \cdot -3 + 1 \cdot 4}{9+9+16} \cdot \vec{AB} \\ & = \dfrac{13}{34} \cdot \vec{AB} \end{aligned}$$Dengan demikian, didapat $$\begin{aligned} \vec{DC} & = \vec{EF} \\ & = \vec{AB}-\vec{AE}-\vec{FB} \\ & = \vec{AB}-2\vec{AE} && \vec{AE} = \vec{FB} \\ & = \vec{AB}-2 \cdot \dfrac{13}{34} \vec{AB} \\ & = \left1-\dfrac{13}{17}\right \vec{AB} \\ & = \dfrac{4}{17}\left3\vec{i}-3\vec{j}+4\vec{k}\right \end{aligned}$$Jadi, vektor $DC$ dinyatakan oleh $\boxed{\vec{DC} = \dfrac{4}{17}\left3\vec{i}-3\vec{j}+4\vec{k}\right}$ Jawaban A [collapse] Bagian Uraian Soal Nomor 1 Diketahui $ABCDEF$ adalah segi enam beraturan dengan pusat $O.$ Jika vektor $\vec{AB} = \vec{u}$ dan $\vec{AF} = \vec{v},$ tentukan vektor-vektor di bawah ini dalam $\vec{u}$ dan $\vec{v}.$ a. $\vec{OA}$ b. $\vec{AE}$ c. $\vec{AD}$ Pembahasan Jawaban a Diketahui $\vec{AB} = \vec u$ dan $\vec{AF} = \vec v$. Dengan demikian, $\vec{OF} = -\vec{AB} = -\vec u.$ Untuk itu, $\begin{aligned} \vec{OA} & = \vec{OF} + \vec{FA} \\ & = \vec{OF}-\vec{AF} \\ & = -\vec u -\vec v \end{aligned}$ Jadi, diperoleh $\boxed{\vec{OA} = -\vec u-\vec v}$ Jawaban b Diketahui $\vec{AF} = \vec v$. Dari jawaban a di atas, diketahui juga bahwa $\vec{OA} = \vec{EF} = -\vec u-\vec v.$ Untuk itu, $\begin{aligned} \vec{AE} & = \vec{AF} + \vec{FE} \\ & = \vec{AF}-\vec{EF} \\ & = \vec v-\vec u-\vec v = 2 \vec v+\vec u \end{aligned}$ Jadi, diperoleh $\boxed{\vec{AE} = 2 \vec v+\vec u}$ Jawaban c Dari jawaban a di atas, diketahui bahwa $\vec{OA} = -\vec u- \vec v$ sehingga $\vec{AO} = \vec v+\vec u.$ Karena $\vec{AO} = \vec{OD}$ memiliki arah dan nilai yang sama, maka $\begin{aligned} \vec{AD} & = \vec{AO} + \vec{OD} \\ & = \vec{AO} + \vec{AO} \\ & = 2\vec{AO} = 2\vec v+\vec u \end{aligned}$ Jadi, diperoleh $\boxed{\vec{AD} = 2\vec v+\vec u}$ [collapse] Soal Nomor 2 Pada persegi panjang $OPQR$, diketahui $M$ titik tengah $QR$ dan $N$ titik tengah $PR$. Jika $\vec u = \vec{OP}$ dan $\vec v = \vec{OQ}$, nyatakan $\vec{MN}$ dalam $\vec u$ dan $\vec v$. Pembahasan Perhatikan sketsa gambar berikut. Diketahui $\begin{aligned} \vec{OP} & = \vec u \\ \vec{OQ} & = \vec v \end{aligned}$ Perhatikan vektor $QP$. Jumlah dari vektor $QO$ dan $OP$ sama dengan $\vec{QP}$ sehingga $\begin{aligned} \vec{QP} & = \vec{QO} + \vec{OP} \\ & =-\vec{OQ} + \vec{OP} \\ & =-\vec v + \vec u \end{aligned}$ Karena panjang $\vec{MN}$ setengah dari panjang $\vec{QP}$, maka $\boxed{\vec{MN} = \dfrac12-\vec v + \vec u}$ [collapse] Soal Nomor 3 Given vectors $\vec a = 2\widehat i-\widehat j + 2 \widehat k$ and $\vec b = 4\widehat i-x \widehat j-8 \widehat k$. If vectors $\vec a + \vec b$ is perpendicular to $\vec a$, find the unit vector which has the same direction as $\vec b$. Diberikan vektor $\vec a = 2\widehat i-\widehat j + 2 \widehat k$ and $\vec b = 4\widehat i-x \widehat j-8 \widehat k$. Jika vektor $\vec a + \vec b$ tegak lurus dengan $\vec a$, tentukan vektor satuan yang memiliki arah yang sama dengan $\vec b$. Pembahasan Diketahui $\begin{aligned} \vec a & = 2,-1, 2 \\ \vec b & = 4,-x,-8 \end{aligned}$ Karena vektor $\vec a + \vec b$ tegak lurus dengan $\vec a$, maka $$\begin{aligned} \vec a + \vec b \bullet \vec a & = 0 \\ [2,-1, 2 + 4,-x,-8 \bullet 2,-1, 2 & = 0 \\ 6,-1-x,-6 \bullet 2,-1, 2 & = 0 \\ 62 + -1-x-1 + -62 & = 0 \\ \cancel{12} + 1 + x-\cancel{12} & = 0 \\ 1+x & = 0 \\ x & =-1 \end{aligned}$$Dengan demikian, vektor $b$ dinyatakan oleh $\vec b = 4,-1,-8 = 4, 1,-8.$ Untuk mencari vektor satuan yang searah dengan vektor $\vec b$, kita hanya perlu membagi tiap komponen vektor $\vec b$ dengan panjangnya. Diketahui panjang magnitude $\vec b$ adalah $\begin{aligned} \vec b & = \sqrt{4^2+1^2+-8^2} \\ & = \sqrt{16+1+64} = \sqrt{81} = 9 \end{aligned}$ Vektor satuan yang dimaksud adalah $\begin{aligned} \vec b_i & = \dfrac{\vec b}{\vec b} \\ & = \dfrac{1}{9}4, 1,-8 \\ & = \left\dfrac49, \dfrac19,-\dfrac89\right \end{aligned}$ Catatan Untuk mengecek apakah jawaban ini benar, kita hanya perlu mencari panjang vektor $\vec b_i$. Karena vektor satuan adalah vektor yang panjangnya 1, maka haruslah $\vec b_i = 1$. [collapse] Soal Nomor 4 Jika $\vec a = 10, \vec b = 6$, dan $\angle\vec a, \vec b = 60^{\circ}$, maka tentukan a. $\vec a + \vec b$; b. $\vec a-\vec b$; c. $2\vec a-\vec b$. Pembahasan Jawaban a Dengan menggunakan aturan kosinus pada vektor, didapat $$\begin{aligned} \vec a + \vec b & = \sqrt{\vec a^2+\vec b^2+2\vec a\vec b \cos \angle\vec a, \vec b} \\ & = \sqrt{10^2+6^2+2106 \cos 60^{\circ}} \\ & = \sqrt{100+36+\cancel{2}60 \dfrac{1}{\cancel{2}}} \\ & = \sqrt{196} = 14 \end{aligned}$$Jadi, panjang vektor $\vec a + \vec b$ adalah $\boxed{14}$ Jawaban b Karena $\angle\vec a, \vec b = 60^{\circ}$, maka $\angle\vec a,-\vec b = 180^{\circ}-60^{\circ} = 120^{\circ}$ sehingga dengan menggunakan aturan kosinus pada vektor, diperoleh $$\begin{aligned} \vec a-\vec b & = \sqrt{\vec a^2+-\vec b^2+2\vec a-\vec b \cos \angle\vec a,-\vec b} \\ & = \sqrt{10^2+-6^2+210-6 \cos 120^{\circ}} \\ & = \sqrt{100+36-\cancel{2}60 \left-\dfrac{1}{\cancel{2}}\right} \\ & = \sqrt{196} = 14 \end{aligned}$$Jadi, panjang vektor $\vec a-\vec b$ adalah $\boxed{14}$ Jawaban c Karena $\angle\vec a, \vec b = 60^{\circ}$, maka $\angle2\vec a,-\vec b = 180^{\circ}-60^{\circ} = 120^{\circ}$. Kelipatan skalar vektor tidak mengubah arahnya Dengan menggunakan aturan kosinus pada vektor, diperoleh $$\begin{aligned} 2\vec a-\vec b & = \sqrt{2 \vec a^2+-\vec b^2+22 \vec a-\vec b \cos \angle2 \vec a,-\vec b} \\ & = \sqrt{410^2+-6^2+2210-6 \cos 120^{\circ}} \\ & = \sqrt{400+36-\cancel{2}120 \left-\dfrac{1}{\cancel{2}}\right} \\ & = \sqrt{556} = 2\sqrt{139} \end{aligned}$$Jadi, panjang vektor $2\vec a,-\vec b$ adalah $\boxed{2\sqrt{139}}$ [collapse] Soal Nomor 5 Jika $\vec {a} = 1, \vec{b} = 9$, dan $\vec{a} \bullet \vec{b} = 5$, tentukan a. besar $\vec{a}-\vec{b}$; b. besar $2\vec{a}-3\vec{b}$. Pembahasan Jawaban a $$\begin{aligned} \vec{a}-\vec{b} & = \sqrt{\vec{a}-\vec{b}^2} \\ & = \sqrt{\vec{a} \bullet \vec{a}-2 \cdot \vec{a} \bullet \vec{b}+\vec{b} \bullet \vec{b}} \\ & = \sqrt{\vec{a}^2-2 \cdot \vec{a} \bullet \vec{b} + \vec{b}^2} \\ & = \sqrt{1^2-2 \cdot 5 + 9^2} \\ & = \sqrt{1-10+81} = \sqrt{72} = 6\sqrt2 \end{aligned}$$Jawaban b $$\begin{aligned} 2\vec{a}-3\vec{b} & = \sqrt{2\vec{a}-3\vec{b}^2} \\ & = \sqrt{4 \cdot \vec{a} \bullet \vec{a}-12 \cdot \vec{a} \bullet \vec{b}+9 \cdot \vec{b} \bullet \vec{b}} \\ & = \sqrt{4\vec{a}^2-12 \cdot \vec{a} \bullet \vec{b} + 9\vec{b}^2} \\ & = \sqrt{41^2-12 \cdot 5 + 99^2} \\ & = \sqrt{4-60+729} = \sqrt{673} \end{aligned}$$ [collapse] Soal Nomor 6 Diberikan segitiga sama sisi dengan panjang sisi $4$ satuan seperti gambar. Tentukan hasil dari $\vec{a} \bullet \vec{a} + \vec{b} + \vec{c}$. Pembahasan Berdasarkan prinsip penjumlahan vektor, kita tahu bahwa $\vec{a} + \vec{c} = \vec{b}$ sehingga $\begin{aligned} \vec{a} \bullet \vec{a} + \vec{b} + \vec{c} & = \vec{a} \bullet \vec{b} + \vec{b} \\ & = 2\vec{a} \bullet \vec{b} \end{aligned}$ Selanjutnya, akan dicari nilai $\vec{a} \bullet \vec{b}$ menggunakan aturan kosinus pada vektor $\cos \theta = \dfrac{\vec{a} \bullet \vec{b}}{\vec{a} \cdot \vec{b}}$. Besar sudut antara dua vektor itu adalah $60^{\circ}$ karena segitiga sama sisi dan panjang vektor $a$ dan $b$ masing-masing $4$ satuan. Untuk itu, $\begin{aligned} \cos 60^{\circ} & = \dfrac{\vec{a} \bullet \vec{b}}{4 \cdot 4} \\ \dfrac12 & = \dfrac{\vec{a} \bullet \vec{b}}{9} \\ \vec{a} \bullet \vec{b} & = 8 \end{aligned}$ Dengan demikian, diperoleh $\boxed{2\vec{a} \bullet \vec{b} = 28 = 16}$ [collapse] Soal Nomor 7 Diketahui koordinat $A0,4,6,B-2,0,4$, dan $C2,2,2$. Titik $P$ terletak pada $AB$ sedemikian sehingga $AP PB = 13$. Tentukan a. Koordinat $P$; b. Proyeksi vektor $\vec{AP}$ pada $\vec{AC}$; c. Proyeksi skalar $\vec{AP}$ pada $\vec{AC}$. Pembahasan Jawaban a Titik $P$ terletak pada $AB$ sedemikian sehingga $AP PB = 13$. Untuk itu, koordinat $P$ dapat ditentukan sebagai berikut. Absis $\begin{aligned} x_P & = \dfrac{1}{1+3}1x_B + 3x_A \\ & = \dfrac141-2+30 =-\dfrac12 \end{aligned}$ Ordinat $\begin{aligned} y_P \\ & = \dfrac{1}{1+3}1y_B + 3y_A \\ & = \dfrac1410+34 = 3 \end{aligned}$ Aplikat $\begin{aligned} z_P & = \dfrac{1}{1+3}1z_B + 3z_A \\ & = \dfrac1414+36 = \dfrac{11}{2} \end{aligned}$ Jadi, koordinat $P$ adalah $\boxed{\left-\dfrac12, 3, \dfrac{11}{2}\right}$ Jawaban b Diketahui bahwa $\begin{aligned} \vec{AP} & = P- A \\ & = \left-\dfrac12, 3, \dfrac{11}{2}\right- 0, 4, 6 \\ & = \left-\dfrac12,-1,-\dfrac12\right \\ \vec{AC} & = C- A \\ & = 2,2,2-0,4,6 \\ & =2,-2,-4 \\ \vec{AC}^2 & = 2^2+-2^2+4^2 = 24 \end{aligned}$ Dengan menggunakan rumus proyeksi vektor, didapat $$\begin{aligned} \vec{AP}_{\vec{AC}} & = \dfrac{\vec{AP} \bullet \vec{AC}}{\vec{AC}^2} \cdot \vec{AC} \\ & = \dfrac{\left-\dfrac12,-1,-\dfrac12\right \bullet 2,-2,-4}{24} \cdot 2,-2, 4 \\ & = \dfrac{-1 + 2 + 2}{24} \cdot 2,-2, 4 \\ & = \left\dfrac14,-\dfrac14, \dfrac12\right \end{aligned}$$Jadi, proyeksi vektor $\vec{AP}$ pada $\vec{AC}$ adalah $\boxed{\dfrac14 \widehat i- \dfrac14 \widehat j + \dfrac12 \widehat k}$ Jawaban c Diketahui bahwa $$\begin{aligned} \vec{AP} & = P- A = \left-\dfrac12, 3, \dfrac{11}{2}\right- 0, 4, 6 = \left-\dfrac12,-1,-\dfrac12\right \\ \vec{AC} & = C- A = 2,2,2-0,4,6=2,-2,-4 \\ \vec{AC} & = \sqrt{2^2+-2^2+4^2} = \sqrt{24} = 2\sqrt6 \end{aligned}$$Dengan menggunakan rumus proyeksi skalar, didapat $$\begin{aligned} \vec{AP}_{\vec{AC}} & = \dfrac{\vec{AP} \bullet \vec{AC}}{\vec{AC}} \\ & = \dfrac{\left-\dfrac12,-1,-\dfrac12\right \bullet 2,-2,-4}{2\sqrt6} \\ & = \dfrac{-1 + 2 + 2}{2\sqrt6} \\ & = \dfrac{3}{2\sqrt6} \color{red}{\times \dfrac{\sqrt6}{\sqrt6}} \\ & = \dfrac{\cancel{3}\sqrt6}{2\cancelto{2}{6}} = \dfrac{1}{4}\sqrt6 \end{aligned}$$Jadi, proyeksi skalar $\vec{AP}$ pada $\vec{AC}$ adalah $\boxed{\dfrac14\sqrt{6}}$ [collapse] Soal Nomor 8 Diketahui balok $ dengan $\vec{OA} = 4, \vec{OC} = 3$, dan $\vec{OD} = 6$. Tentukan proyeksi skalar $\vec{OF}$ pada $\vec{OB}$. Pembahasan Perhatikan sketsa balok $ berikut. Karena $\vec{OA} = 4$ dan $\vec{OC} = \vec{AB} = 3$, maka dengan rumus Pythagoras, diperoleh $\begin{aligned} \vec{OB} & = \sqrt{\vec{OA}^2 + \vec{AB}^2} \\ & = \sqrt{4^2+3^2} = 5 \end{aligned}$ Misalkan $\vec{c}$ adalah proyeksi skalar $\vec{OF}$ pada $\vec{OB}$ sehingga $\vec{c} = \dfrac{\vec{OF} \bullet \vec{OB}}{\vec{OB}}.$ Misalkan juga sudut antara $\vec{OB}$ dan $\vec{OF}$ adalah $\theta$ sehingga dengan menggunakan aturan kosinus pada vektor, diperoleh $\begin{aligned} \cos \theta & = \dfrac{\vec{OF} \bullet \vec{OB}}{\vec{OF} \cdot \vec{OB}} \\ \dfrac{\vec{OB}}{\cancel{\vec{OF}}} & = \dfrac{\vec{OF} \bullet \vec{OB}}{\cancel{\vec{OF}} \cdot \vec{OB}} \\ \vec{OB}^2 & = \vec{OF} \bullet \vec{OB} \end{aligned}$ Kembali pada rumus proyeksi skalar, diperoleh $\begin{aligned} \vec{c} & = \dfrac{\vec{OF} \bullet \vec{OB}}{\vec{OB}} \\ & = \dfrac{\vec{OB}^2}{\vec{OB}} \\ & = \vec{OB} = 5 \end{aligned}$ Jadi, proyeksi skalar $\vec{OF}$ pada $\vec{OB}$ adalah $\boxed{5}$ [collapse] Soal Nomor 9 Diketahui segi empat $ABCD$ dengan titik $P$ pada $AC$ sehingga $\vec{AP} = \dfrac13 \vec{AC}$ dan titik $Q$ pada $BD$ sehingga $\vec{BQ} = \dfrac13 \vec{BD}$. Buktikan bahwa $3\vec{PQ} = 2\vec{AB}+\vec{AD}-\vec{AC}.$ Pembahasan Perhatikan sketsa gambar segi empat $ABCD$ berikut. Dari gambar, $\color{blue}{\vec{AD} = \vec{AB} + \vec{BD}}$. Berdasarkan aturan penjumlahan vektor, diperoleh $$\begin{aligned} \vec{PQ} & = \vec{PA} + \vec{AD}+\vec{DQ} \\ \vec{PQ} & = -\dfrac13 \vec{AC} + \vec{AD}-\dfrac23 \vec{BD} \\ \text{Kalikan}&~\text{kedua ruas dengan}~3 \\ 3\vec{PQ} & = -\vec{AC} + 3\vec{AD}-2 \vec{BD} \\ 3\vec{PQ} & = \vec{AD} + 2\vec{AD}-2\vec{BD}-\vec{AC} \\ 3\vec{PQ} & = \vec{AD} + 2\color{blue}{\vec{AB} + \vec{BD}} -2\vec{BD}-\vec{AC} \\ 3\vec{PQ} & = 2\vec{AB}+\vec{AD}-\vec{AC} \end{aligned}$$Jadi, terbukti bahwa $$3\vec{PQ} = 2\vec{AB}+\vec{AD}-\vec{AC}.$$ $\blacksquare$ [collapse]
SAMahasiswa/Alumni Universitas Negeri Malang31 Oktober 2021 1146Hallo RZF, kakak bantu jawab ya .... Ingat kembali deret teleskopik adalah deret bilangan dimana setiap sukunya saling menghilangkan satu sama lain. Diketahui 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 dapat disederhanakan menjadi 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 3/3-1/34/4-1/45/5-1/56/6-1/6...1-1/20151-1/2016 = n-2013/2016 2/33/44/55/6 ... 2014/20152015/2016 = n - 2013/2016 Jika dihilangkan satu sama lain maka 2/2016 = n - 2013/2016 n = 2/2016 + 2013/2016 n = 2015/2016 Dengan demikian, nilai n adalah 2015/2016. semoga membantu ^^Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
diketahui bahwa 1 1 3